

Why Probability?

• Statistics uses probability to convey inferential conclusions from sample data about a larger population.

• Probability distributions (e.g., normal, binomial) describe how data is spread. Understanding these distributions allows statisticians to solve probability problems with appropriate statistical methods.

Probability

DOCTRINE OF CHANCES:

O R

A Method of Calculating the Probability of Events in Play.

(i) (ii) (iii) (ii) (iii) (ii

By A. De Moivre. F. R. S.

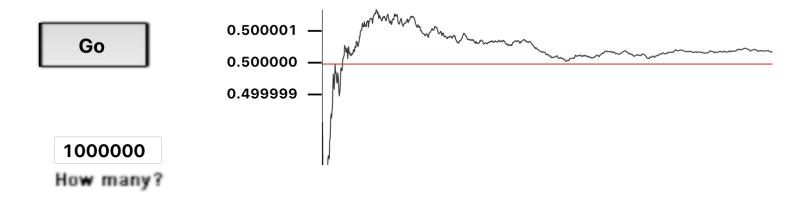
- representative production of the production of the

LONDON:

Printed by W. Pearfon, for the Author. M DCCXVIII.

Probability:

The convergent ratio of "successes" over the number of trials where the trials are performed "ad infinitum".



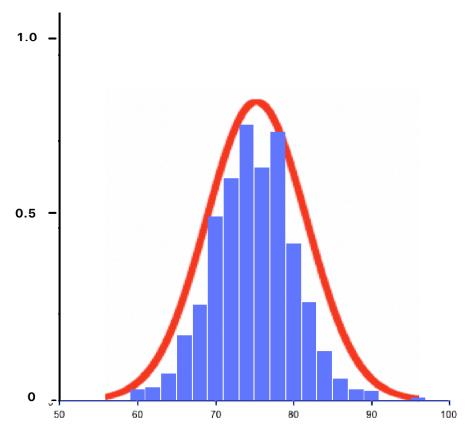
Probability:

To calculate we must have either

a "history" of trials and successesor

• a complete mathematical representation of the system in question

Relative Frequency Histograms and Probability Distributions



Many statistics texts do not discuss the concept of probability density in detail, but you should keep the following ideas in mind about the curve that describes a continuous distribution (like the normal distribution).

- First, the area under the curve equals 1.
- Second, the probability of any exact value of *X* is 0.
- Finally, the area under the curve and bounded between two given points on the X-axis is the probability that a number chosen at random will fall between the two points.

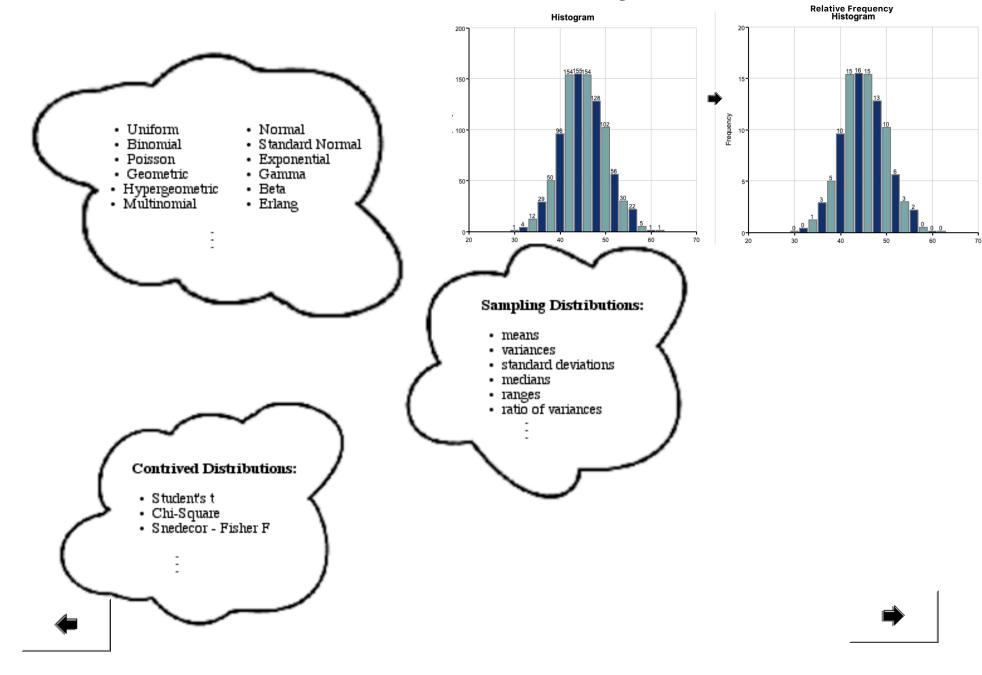
Also,

•
$$P(A) = 1 - P(\text{not } A)$$

•
$$P(A \text{ and } B) = P(A) \times P(B)$$

•
$$P(A \text{ or } B) = P(A) + P(B) - P(A) \times P(B)$$

Data Distributions vs Probability Distributions



Probability:

- The length of human pregnancies from conception to birth approximates a normal distribution with a mean of 266 days and a standard deviation of 16 days.
 - What proporton of pregnancies last less than 240 days?
 - What fraction of pregnancies last less than 240 days?
 - What percent of pregnancies last less than 240 days?
 - What is the probability that a pregnancy will last less than 240 days?
 - What length of time marks the shortest 70% of all pregnancies?

$$\int_{0}^{240} \frac{1.0}{16 \sqrt{2 * \pi}} e^{-\frac{1}{2} \left(\frac{x-266}{16}\right)^{2}} dx$$

$$Solve \left[0.70 = \int_{0}^{x} \frac{1.0}{16 \sqrt{2 * \pi}} e^{-\frac{1}{2} \left(\frac{x-266}{16}\right)^{2}} dx, x\right]$$

$$x \to 274.39$$

$$0.0520813$$

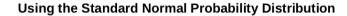
Data Distributions vs Probability Distributions

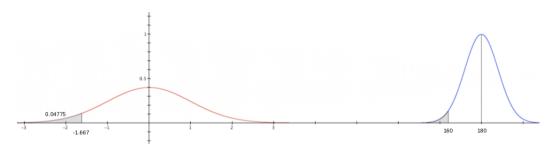
Three ways to approach our statistical work.

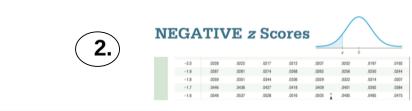
1.

$$\int_0^{160} \frac{1}{\sqrt{2.0 \pi (12)^2}} e^{\frac{-(x-180)^2}{2(12)^2}} dx$$

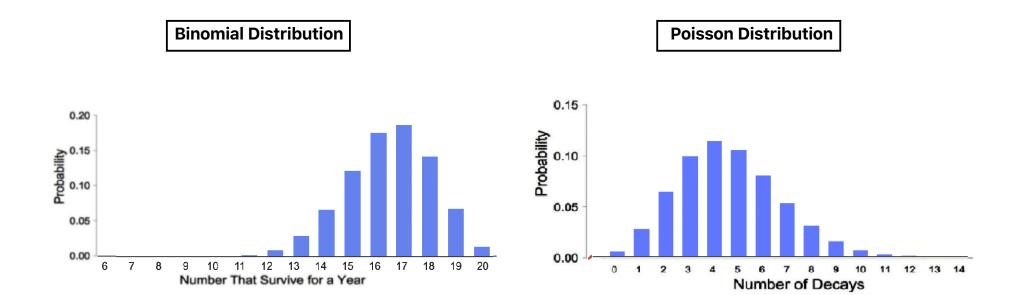
0.0477904



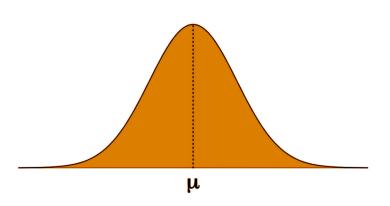




Discrete Distributions

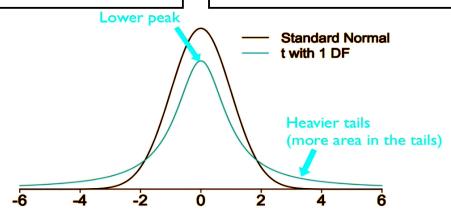


Continuous Distributions



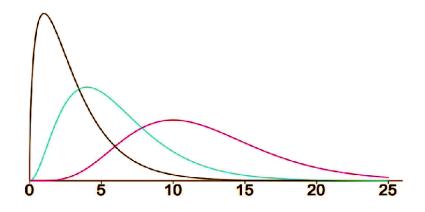
Standard Normal Distribution

Student's *t***-Distribution**

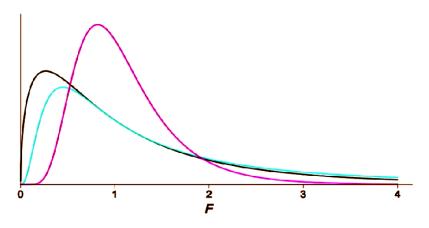


As the degrees of freedom increase, the t distribution tends toward the standard normal distribution

Chi Square Distribution

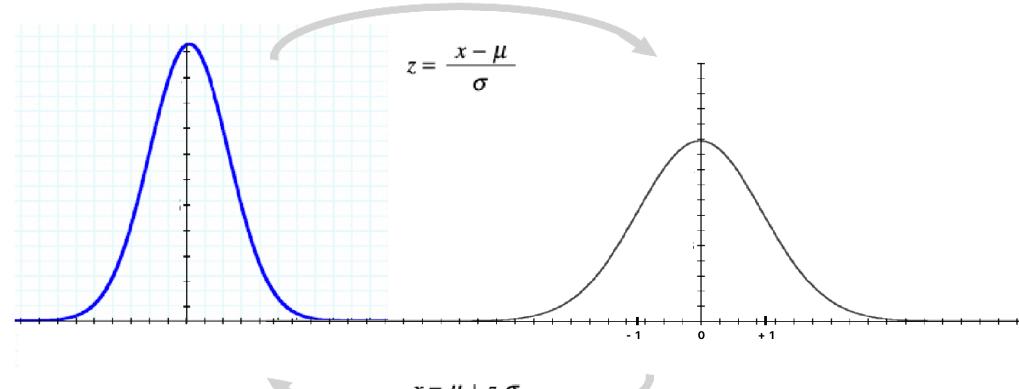


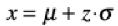
Fischer F Distribution



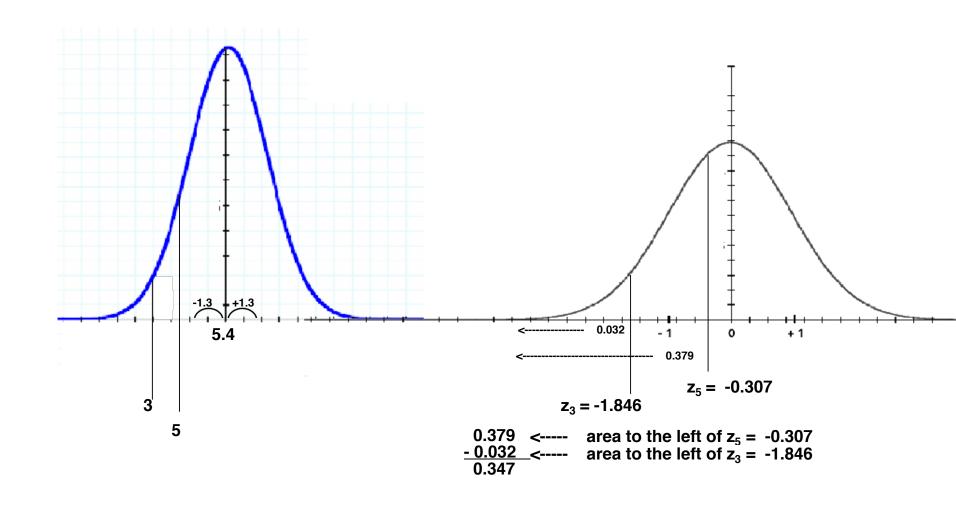
IQ Scores Rainfall Amounts Product Lifetimes Wind Speeds Cholesterol Levels Sensor Measurements Network Latency Human Reaction Times Normal Dustribution The normal probability distribution was first discovered by Abraham De Moivre in 1733 as an approximation to the binomial distribution. While often called the Gaussian distribution and attributed to Carl Friedrich Gauss (who published his work on it in 1809), Gauss's work built upon and refined the existing principles of the distribution. **Blood Glucose Levels Memory Recall Time Heart Rate Material Strength Delivery Times Defect Rates Minor Earthquake Magnitudes Birth Weights Website Traffic Temperature Variations Production Costs Battery Life Body Weight Insurance Claim Amounts Reading Speeds Body Temperature River Flow Rates Machine Tolerances Time to Complete Tasks**

Standardize any Normal Distribution





Standardize any Normal Distribution



Histogram

Number of intervals:

10

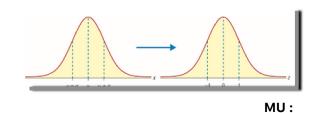
20

Population Size:

1000

54.18192	
35.89285	
43.48103	
52.01798	
39.49108	
44.5143	
46.19136	
42.44947	
42.29704	
42.7461 42.59781	
40.40228	
43.07388	
49.85313	
53.36640	
47.43559	
52.86845	
49.45608	
46.12574	
46.63426	
43.16321	
44.30296	
46.20177	

Standard Normal Distribution



 $pmf = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{(x-\mu)}{2\sigma^2}}$

Normal Distribution

Morm al

$$\mu \rightarrow 45$$

4.894827

SIGMA:

VAR:

23.959327

VAR :

SIGMA:

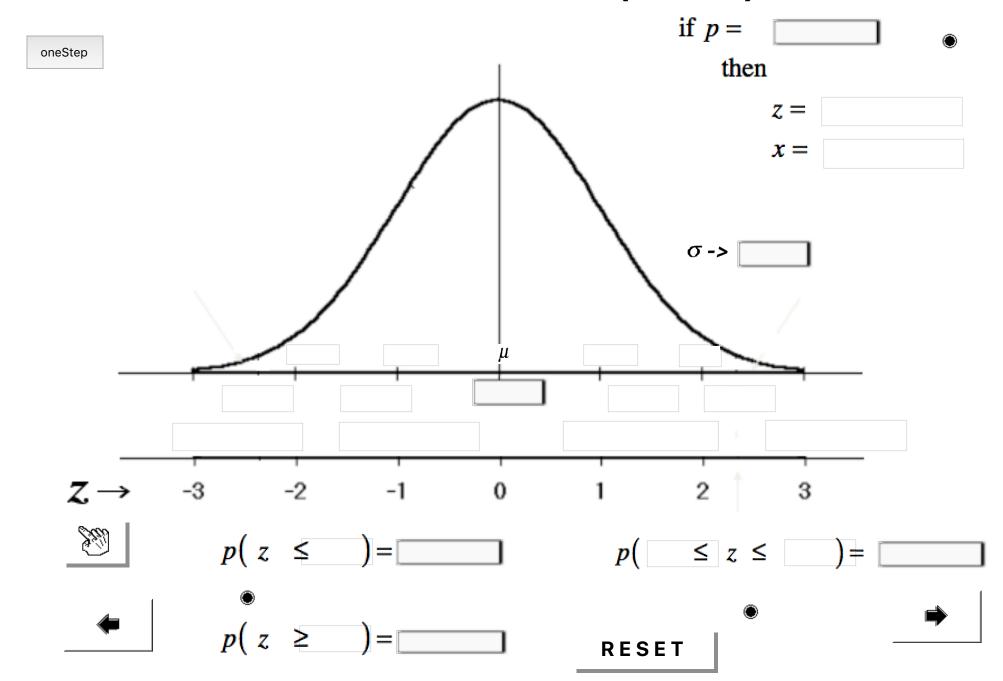
MU:

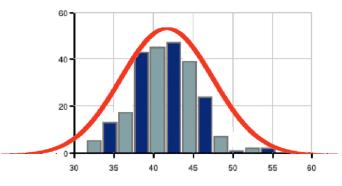
1.001001

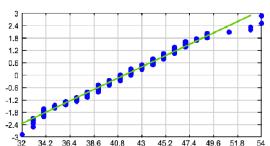
1.0005

0

Areas and Probabilities (Normal)

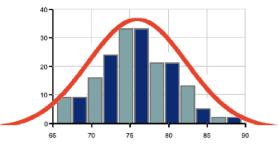


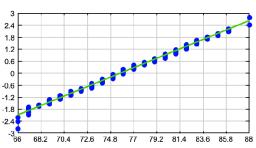




Ryan-Joiner Test
Test statistic, Rp:
Critical value for 0.05 significance level:
Critical value for 0.01 significance level:
0.9939
0.9913

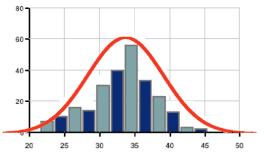
Reject normality with a 0.05 significance level. Fail to reject normality with a 0.01 significance level.

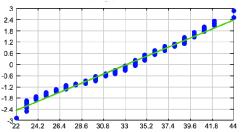




Ryan-Joiner Test
Test statistic, Rp: 0.9959
Critical value for 0.05 significance level: 0.9923
Critical value for 0.01 significance level: 0.989

Fail to reject normality with a 0.05 significance level. Fail to reject normality with a 0.01 significance level.





Ryan-Joiner Test
Test statistic, Rp: 0.9911
Critical value for 0.05 significance level: 0.9939
Critical value for 0.01 significance level: 0.9914

Reject normality with a 0.05 significance level. Reject normality with a 0.01 significance level.

BINOMIAL

Number of Side Effects from Medications Number of Fraudulent Transactions Number of Spam Emails per Day Number of River Overflows Shopping Returns per Week

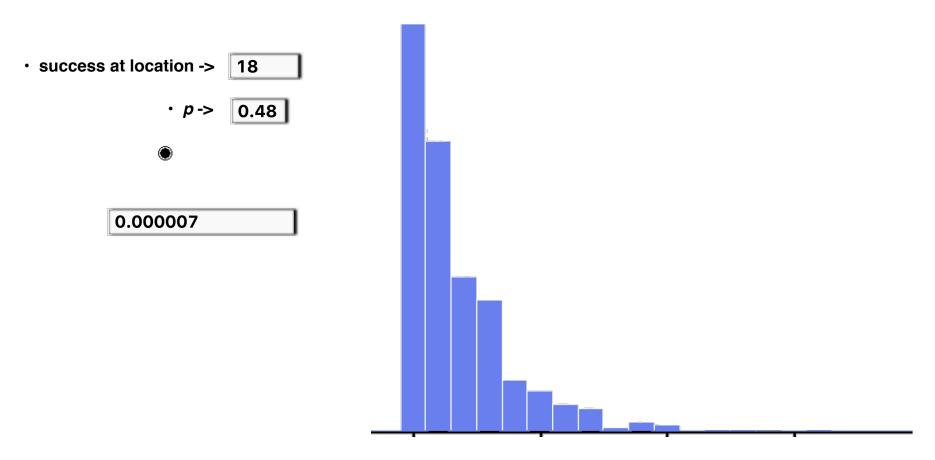
•

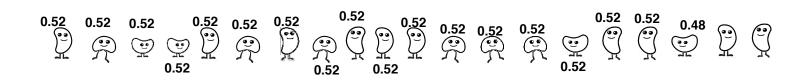
POISSON

Calls per Hour at a Call Center Number of Arrivals at a Restaurant Number of Website Visitors per Hour Number of Bankruptcies Filed per Month Number of Network Failures per Week

•

Areas and Probabilities (Geometric)





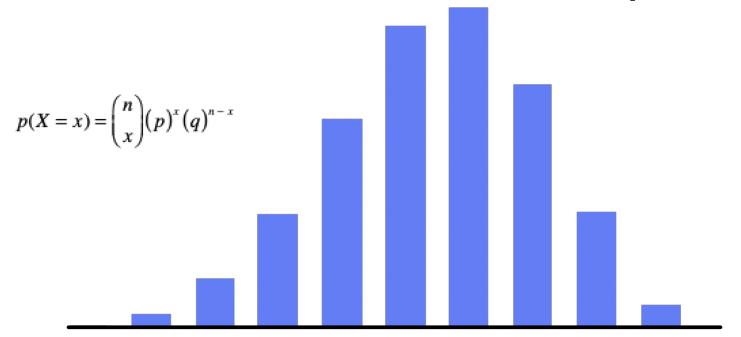
Clinical Side Effects Sports Betting Telemarketing Success Employee Retention Customer Satisfaction Surveys Credit Risk Assessment Vaccine Efficacy Binomial Distribution Fraud Detection Genetic Trait Inheritance The binomial probability distribution was discovered by the Swiss mathematician Jal Bernoulli (also known as James Bernoulli) his posthumously published work Ars Conjectandi in 1713. Call center success rates Agree/Disagree polling **Online Course Completion** Disease testing prevalence **Online Ad Click-Through Rates Customer Churn Weather Event Prediction**

Supply Chain Delays

Customer Feedback

Product Sampling

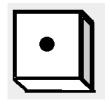
Areas and Probabilities (Binomial)

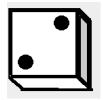


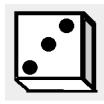
Roll	Occurrences	Probabilit
2	1	1/36 0.0
3	2	2/36 0.0
4	3	3/36 0.0
5	4	4/36 0.1
6	5	5/36 0.1
7	6	6/36 0.1
8	5	5/36 0.1
9	4	4/36 0.1
10	3	3/36 0.0
11	2	2/36 0.0
12	1	1/36 0.0

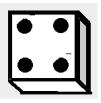
- Find the probability of "winning" 4 times in 10 rolls.
- Find the probability of "winning" at most 3 times out of 10 rolls.
- Find the probability of "winning" more than half the time out of 10 rolls.

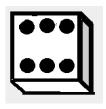
Dice Simulator











0.166667

0.166667

0.166667

0.166667

0.166667

0.166667

Options

Number of Dice : 2
Number of Rolls : 100

GO

UnbiasedBiasedShow Rolls1-2-3-4-5-6

Coin Simulator

How many occurences of 2

heads?

375

Heads: Tails:

2020 1980

Unbiased

Biased

Options

Number of Coins: 4

Number of Trials: 1000

1000

GO

Н,Н,Н,Н	4H, 0T
T,H,T,T	1H, 3T
T,H,T,T	1H, 3T
H,T,T,T	1H, 3T
T,T,T,H	1H, 3T
H,H,T,T	2H, 2T
T,H,T,T	1H, 3T
T,T,H,T	1H, 3T
H,T,T,H	2H, 2T
H,H,T,H	3H, 1T
T,T,T,H	1H, 3T
H,H,T,T	2H, 2T
H,H,T,H	3H, 1T
H,T,T,H	2H, 2T
H,T,T,H	2H, 2T
T,T,H,T	1H, 3T
T,H,H,T	2H, 2T
H,H,T,H	3H, 1T
T,T,T,H	1H, 3T
T,H,H,T	2H, 2T

$$p(X=x) = \binom{n}{x} (p)^x (q)^{n-x}$$

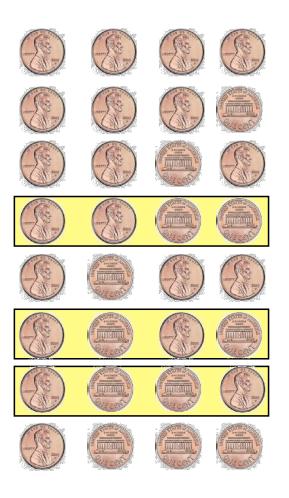
Show Flips

0.5

Tails

0.5

Areas and Probabilities



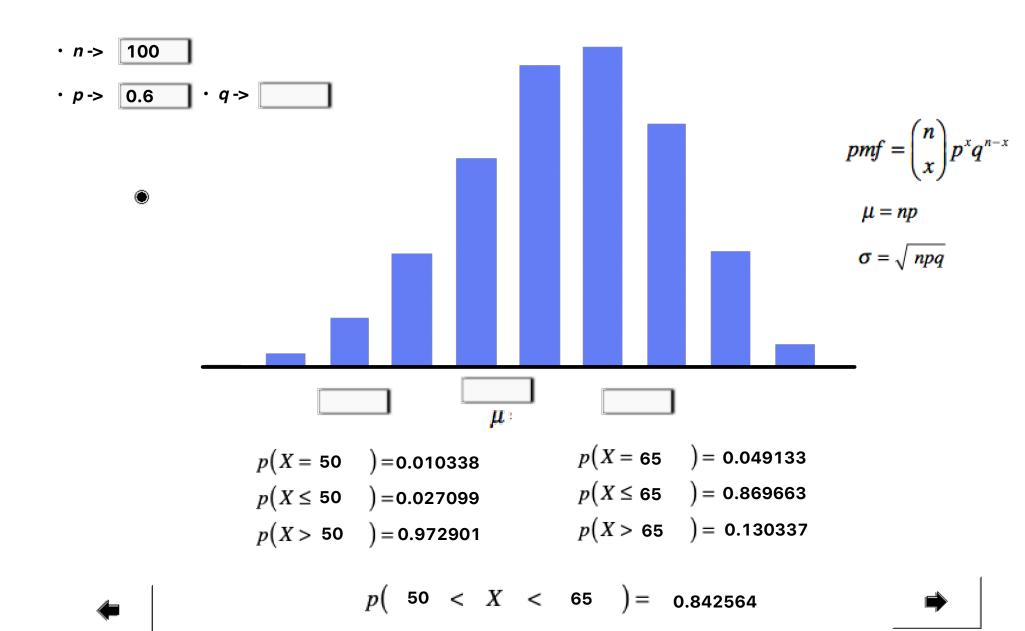
$$\binom{n}{x} = \frac{n!}{x!(n-x!)}$$

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{\cancel{\cancel{A}} \cdot 3 \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{1}}}{\cancel{\cancel{2}} \cdot \cancel{\cancel{1}}(\cancel{\cancel{2}} \cdot 1)}$$

$$p(X = 2) = {4 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 = 6 \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{6}{16} = 0.375$$

 $p(X=x) = \binom{n}{x} (p)^x (q)^{n-x}$

Areas and Probabilities (Binomial)



Flood occurrences

Patient arrivals at an emergency

Mutations in a DNA sequence

Meteor showers

Fire outbreaks in a district

Lightning strikes in an area

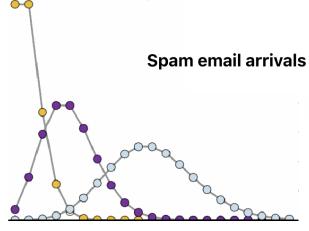
Pedestrian crossings at intersections

Disease outbreaks in a region

Customer complaints

Animal sightings in a national park

Earthquakes in a region



Poisson Distribution

Hospital readmissions

The Poisson probability distribution was discovered by the French mathematician and physicist **Siméon Denis Poisson** in 1837. He introduced the distribution to model the probability of rare events occurring over a fixed interval, such as the number of wrongful convictions in a given population

Online order placements

ext message arrivals

Medical equipment failures

Bus arrivals at a stop

Power outages in a grid

Elevator breakdowns in a building

Prescription errors in a pharmacy

Traffic light failures

Network packet arrivals

Cosmic ray hits on a detector

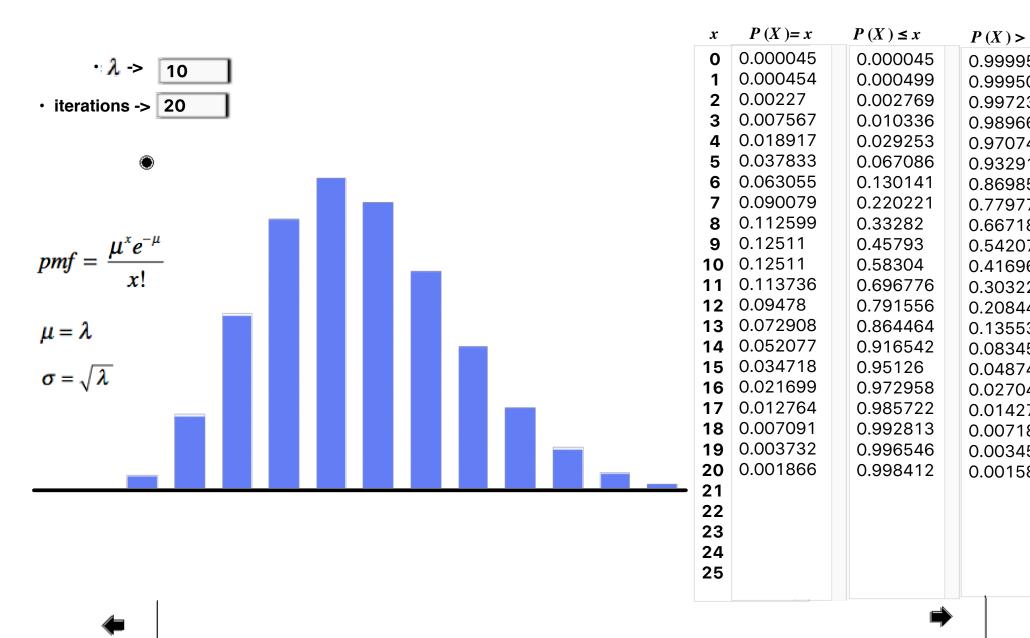
Parking violations in a city zone

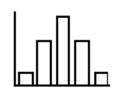
Phone calls to a call center

Tree falls in a forest

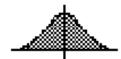
Police emergency calls

Areas and Probabilities (Poisson)

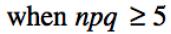


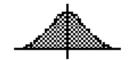


"Continuity" correction:

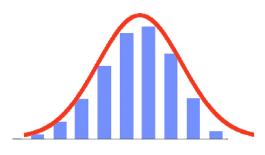


Binomial Distribution





$$pmf = \binom{n}{x} p^x q^{n-x}$$



$$pmf = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = np$$

$$\sigma = \sqrt{npq}$$

Compute the probability that between 50 and 75 of 100 white blood cells will be neutrophils (white blood cells which form an essential part of the innate immune system). The probability that one cell is a neutrophil is 0.6

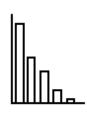
$$p(50 \le x \le 75)$$

$$\sum_{k=50}^{75} \text{Binomial[100, k]} * (0.6^k) * (0.4)^{100-k}$$

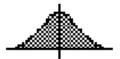
$$N\left[\left(\frac{1}{\sqrt{2 (24) \pi}}\right) \int_{50}^{75} e^{\frac{-(x-60)^2}{2 (24)}} dx\right]$$

0.982677

$$N\left[\left(\frac{1}{\sqrt{2(24)\pi}}\right)\int_{49.5}^{75.5} e^{\frac{-(x-60)^2}{2(24)}} dx\right]$$



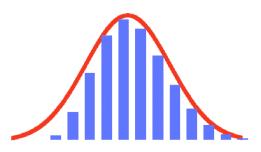
"Continuity" correction:



when $\mu \ge 10$

Poisson Distribution

$$pmf = \frac{\mu^x e^{-\mu}}{x!}$$



$$pmf = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \lambda$$

$$\sigma = \sqrt{\lambda}$$

Consider the distribution of the number of bacteria in a Petri plate whose area is 100 cm². Assume the probability of observing x bacteria is given by a Poisson distribution with $\lambda = 0.16(100)$. Suppose 20 bacteria are observed in this area. How unusual is this?

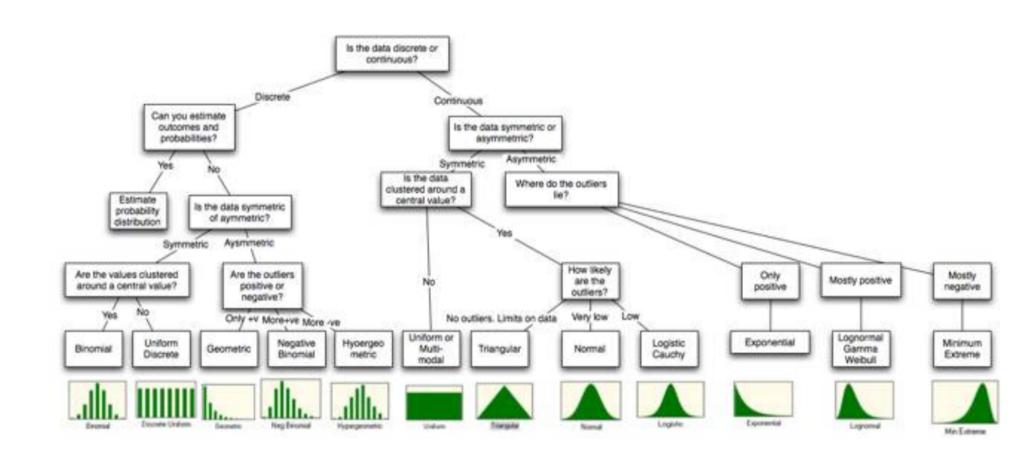
$$1 - N \left[\sum_{k=0}^{19} \frac{16^k e^{-16}}{k!} \right]$$

$$p(x \ge 19)$$

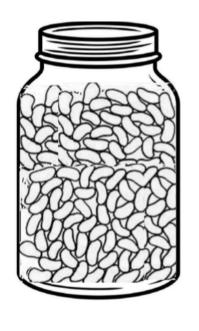
$$1 - N \left[\int_{0}^{19} \frac{1.0}{\sqrt{16} \sqrt{2 * \pi}} e^{\frac{-1}{2} \left(\frac{x - 16}{\sqrt{16}} \right)^{2}} dx \right]$$

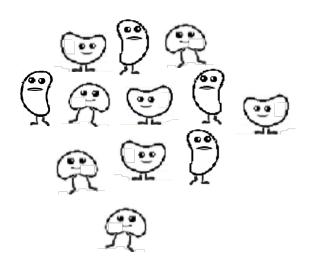
$$1 - N \left[\int_{0}^{19.5} \frac{1.0}{\sqrt{16} \sqrt{2 * \pi}} e^{\frac{-1}{2} \left(\frac{x - 16}{\sqrt{16}} \right)^{2}} dx \right]$$

Data Distributions vs Probability Distributions



Sampling



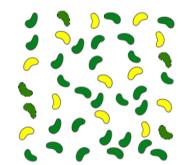


Previous

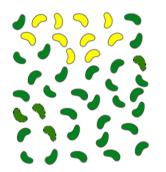
Next

Sampling Strategies

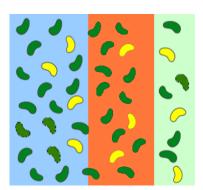
Systematic



Convenience



Cluster

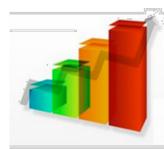


Stratified

Previous

Next

Sampling Bias



Types of Bias

1. Undercoverage

- when you inadequately represent some members of your population in the

2. Voluntary Response Bias

- only viewers who have strong opinions on who should win will participate

3. Convenience Sample Bias

- the sample is taken from a group of people easy to contact or to reach

4. Nonresponse Bias

- snail mail survey for young adults or a smartphone survey for older adults

5. Response Bias

- they may feel pressure to give answers that are socially acceptable

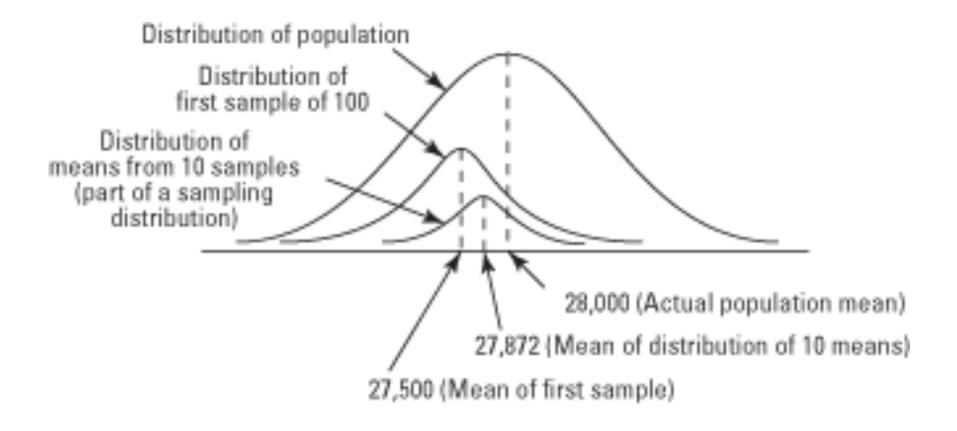
6. Social-desirability Bias

- "Trump deniabilty syndrome"

Next

Previous

Taking Samples



The Central Limit Theorem

The sample mean will be approximately normally distributed for large sample sizes, regardless of the distribution from which we are sampling.

$$\overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}}^2) \sim N(\mu, \frac{\sigma^2}{n})$$

Sampling Distribution (Means)

Population Size:

1000

Histogram

Number of intervals:

- **10**
 - 20

Distribution

Binomial Distribution

Poisson Distribution

Normal Distribution

Exponential Distribution

40 59

56

41 67 90

28 25

41

87

45

75 9

50

59 18

54

23 41

23

MU:

47.833

SIGMA:

28.451909

n -> 20

VAR:

809.511111

Sample. Size:

40

Number of Samples:

200

Mean of Sampling Distribution:

47.235

Standard Deviation of Sampling Distribution:

4.73284

Standard Error: (Calculated) 4.498642

$$\sigma^* = \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution (Variances)

Population Size:

250

Histogram

Number of intervals:

0 10

20

Ripomial

38.7 43.8 47.2 46.3

42.9 42.4

39.8

48.1 42.5 41.4

44.8 43.0

46.3

41.7

43.0

50.3 48.2 50.4 40.8 40.7

47.5 40.7

44.4

42.3 51.8

52.5

47.9 34.6

39.7

Uniform Distribution Binomial

Pistribution

Poisson Distribution Normal Distribution

Exponential Distribution

MU:

46.000152

 σ -

SIGMA: 4.948392

n -> 23

VAR:

24.486585

e. <- d

 $\lambda \rightarrow |$ 4

Sample. Size: 20

Number of Samples:

1000

Mean of Sampling Distribution:

27.77631

Standard Deviation of Sampling Distribution:

8.002262

Standard Error: (Calculated)

1.106494

SAMPLE

Population Size:

1000

Histogram

Number of intervals:

10

20

Binomial

75 39

6

40 14 92

15 81

93

7

16

8 90

25

38 78

72

43 90

73

Distribution Distribution

Poisson Distribution

Normal Distribution Exponential Distribution

MU:

SIGMA:

51.807

28.967115

839.093751 VAR:

$$\sigma \rightarrow 5$$

$$\lambda
ightarrow 4$$

Sample. Size:

400 **Number of Samples:**

Mean of Sampling Distribution:

Standard Deviation of Sampling Distribution:

Standard Error: (Calculated)

10

31.442935

4.394522

9.160206

SAMPLE

Sampling Distribution (Ranges)

Population Size:

200

Histogram

Number of intervals:

10

20

0.19 0.79 0.37 0.20

0.50 0.27

0.46

0.09

0.06

0.04 0.12

0.76

0.34

0.25

0.22

0.11 0.05 0.18

0.39

0.01

0.03

0.04

0.00

0.07

Uniform Distribution

Binomial Distribution

Poisson Distribution Normal Distribution

Exponential Distribution

MU:

0.249429

 μ -> 13

SIGMA:

0.227932

J -> 12

VAR:

0.051953

n -> 25

RANGE:

1.316969

o -> ...

 $\lambda
ightarrow 4$

Sample. Size:

5

Number of Samples:

mples:

Mean of Sampling Distribution:

0.427265

Standard Deviation of Sampling Distribution:

0.216379

Standard Error: (Calculated)

0.101934

SAMPLE

Sampling Distribution (Medians)

Population Size:

250

Histogram

Number of intervals:

10

20

Distribution

Distribution

Poisson Distribution

Normal Exponential Distribution

MU:

23.32

 $\sigma \rightarrow 1$

SIGMA:

5.26665

n -> 23

VAR:

MEDIAN:

27.7376

27.7376

p ->

> .3

^

 \rightarrow 4

Sample. Size:

80

Number of Samples:

100

Mean of Sampling Distribution:

22

Standard Deviation of Sampling Distribution:

0.648074

Standard Error: (Calculated)

0.588829

SAMPLE

> 32 24

22