1.					
Suppose you are a buyer of large supplies of light bulbs.	n =	36	Но:	Pop(average) =	800
You want to test, at the 5% significance level, the	Samp(average) =	816.000	На:	Pop(average) >	800
manufacturer's claim that his bulbs last more than 800	S =	70.000			
hours. You test 36 bulbs and find that the sample mean	1-alpha =	0.950	TS:	1.371428571	
is 816 hours and the sample standard deviation is 70 hours. Should you accept the claim?	alpha =	0.050	CV:	1.645	
2.					
In justifying their demand for higher wages, the employees	n =	400	Ho:	Pop(average) =	13
in the shipping department of a large mail order house	Samp(average) =	14.000	На:	Pop(average) NOT :	13.000
report that on the average, the department completes an	S =	10.000			
order in 13 minutes. As a general manager for this firm,	1-alpha =	0.950	TS:	2	
what can you conclude if a sample of 400 orders shows	alpha =	0.050	CV:	1.965927296	
an average completion time of 14 minutes with a	alpha/2=	0.025			
standard deviation of 10 minutes? Use a .05 level of significance.	df =	399			
3.				_ ,	
In investigating several complaints concerning the weight	n =	36	Ho:	Pop(average) =	12
of the "NET WT. 12 OZ." jar of a local btand of jam, the	Samp(average) =	11.920	На:	Pop(average) NOT :	12.000
Better Business BUreau selected a sample of 36 jars.	S =	0.300	Τ0	1.0	
showed an average net weight of 11.92	1-alpha =	0.990	TS:	-1.6	
ation of .3 ounce. Using a .01	alpha =	0.010	CV:	-2.576	
level of significance, what would the Bureau conclude	alpha/2=	0.005			
about the operation of the local firm?					
4.					
A certain printing press is known to turn out an average of	n =	3	Но:	Pop(average) =	45
45 copies a minute. In an attempt to increase its output,	Samp(average) =	47.000	На:	Pop(average) >	45.000
an alteration is made to the machine, and then in 3 short	S =	1.000		-	
ırns out 46, 47, and 48 copies in a minute.	1-alpha =	0.950	TS:	3.464101615	
Is this increase statistically significant, or is it likely to be	alpha =	0.050	CV:	4.303	
	aiþila =	0.050	CV:	4.303	

	5.					
with mean 75 and variance 36. The Mathematics s = 6.000 Department members would like to know whether this year': 0.207227194 0.950 TS: 4.666666667 of 16 students is typical. They test this alpha = 0.050 CV: 2.490 year's students and find the average score is 82. alpha/2= 0.025 What conclusion should be drawn? deg of freedom 15 6. Among 11 patients in a certain study, the standard deviatio m = 11 property of interest was 5.8. In another group of 4 patient: n = 4 the standard deviation was 3.4. We wish to construct s01 = 5.800 var01 = 33.64 a 95 percent confidence interval for the ratio of the variances of these two populations . 1-alpha = 0.950 alpha/2 = 0.025 deg of freedom_01 = 10 F_left = 0.069353216 deg of freedom_02 = 3 F_right = 4.825621493 var01/var02 = 2.910034602	Past experience has shown that the scores of students who	n =	16	Но:	Pop(average) =	75
Department members would like to know whether this year': 0.207227194 0.950 TS: 4.666666667 of 16 students is typical. They test this alpha = 0.050 CV: 2.490 year's students and find the average score is 82. alpha/2= 0.025 What conclusion should be drawn? deg of freedom 15 6. Among 11 patients in a certain study, the standard deviatio m = 11 property of interest was 5.8. In another group of 4 patients n = 4 the standard deviation was 3.4. We wish to construct s01 = 5.800 var01 = 33.64 a 95 percent confidence interval for the ratio of the s02 = 3.400 var02 = 11.56 variances of these two populations . 1-alpha = 0.950 alpha/2 = 0.025 deg of freedom_01 = 10 F_left = 0.069353216 deg of freedom_02 = 3 F_right = 4.825621493 var01/var02 = 2.910034602	take a certain mathematics test are normally distributed	Samp(average) =	82.000	На:	Pop(average) NOT :	75.000
of 16 students is typical. They test this alpha = 0.050 CV: 2.490 year's students and find the average score is 82. alpha/2= 0.025 What conclusion should be drawn? deg of freedom 15 6. Among 11 patients in a certain study, the standard deviatio m = 11 property of interest was 5.8. In another group of 4 patient: n = 4 the standard deviation was 3.4. We wish to construct s01 = 5.800 var01 = 33.64 a 95 percent confidence interval for the ratio of the s02 = 3.400 var02 = 11.56 variances of these two populations . 1-alpha = 0.950 alpha/2 = 0.050 alpha/2 = 0.025 deg of freedom_01 = 10 F_left = 0.069353216 deg of freedom_02 = 3 F_right = 4.825621493 var01/var02 = 2.910034602	with mean 75 and variance 36. The Mathematics	S =	6.000			
year's students and find the average score is 82. What conclusion should be drawn? deg of freedom 15 6. Among 11 patients in a certain study, the standard deviatio m = 11 property of interest was 5.8. In another group of 4 patients n = 4 the standard deviation was 3.4. We wish to construct sol = 5.800 var01 = 33.64 a 95 percent confidence interval for the ratio of the sol = 3.400 var02 = 11.56 variances of these two populations . 1-alpha = 0.950 alpha/2 = 0.025 deg of freedom_01 = 10 F_left = 0.069353216 deg of freedom_02 = 3 F_right = 4.825621493 var01/var02 = 2.910034602	Department members would like to know whether this year's	0.207227194	0.950	TS:	4.666666667	
What conclusion should be drawn? deg of freedom 15 6. Among 11 patients in a certain study, the standard deviatio $m = 11$ property of interest was 5.8. In another group of 4 patients: $n = 4$ the standard deviation was 3.4. We wish to construct $s01 = 5.800 \text{ var} 01 = 33.64$ a 95 percent confidence interval for the ratio of the $s02 = 3.400 \text{ var} 02 = 11.56$ variances of these two populations . 1 -alpha = 0.950 alpha = 0.050 alpha = 0.050 deg of freedom_01 = $0.050 \text{ deg} = 0.025$ deg of freedom_02 = $0.025 \text{ deg} = 0.025$ deg	of 16 students is typical. They test this	alpha =	0.050	CV:	2.490	
6. Among 11 patients in a certain study, the standard deviatio $m = 11$ property of interest was 5.8. In another group of 4 patients: $n = 4$ the standard deviation was 3.4. We wish to construct $s01 = 5.800 \text{ var}01 = 33.64$ a 95 percent confidence interval for the ratio of the $s02 = 3.400 \text{ var}02 = 11.56$ variances of these two populations . 1 -alpha = $0.950 \text{ alpha} = 0.050 \text{ alpha} = 0.050$ alpha = $0.025 \text{ deg of freedom} = 0.025$ deg of freedom $= 0.025 \text{ deg of freedom} = 0.025$ alpha = $0.025 \text{ deg of freedom} = 0.02$	year's students and find the average score is 82.	alpha/2=	0.025			
Among 11 patients in a certain study, the standard deviatio $m=11$ property of interest was 5.8. In another group of 4 patients $n=4$ the standard deviation was 3.4. We wish to construct $s01=5.800$ var $01=33.64$ a 95 percent confidence interval for the ratio of the $s02=3.400$ var $02=11.56$ variances of these two populations . 1 -alpha = 0.950 alpha = 0.050 alpha/2 = 0.025 deg of freedom_01 = 0.025 deg of freedom_02 = 0.025 0.025 0.025 deg of freedom_02 = 0.025	What conclusion should be drawn?	deg of freedom	15			
alpha = 0.050 alpha/2 = 0.025 deg of freedom_01 = 10 F_left = 0.069353216 deg of freedom_02 = 3 F_right = 4.825621493 var01/var02 = 2.910034602	Among 11 patients in a certain study, the standard deviatio property of interest was 5.8. In another group of 4 patients the standard deviation was 3.4. We wish to construct	n = s01 =	4 5.800			
alpha/2 = 0.025 $deg of freedom_01 = 10 F_left = 0.069353216$ $deg of freedom_02 = 3 F_right = 4.825621493$ var01/var02 = 2.910034602	variances of these two populations .	1-alpha =	0.950			
$\begin{array}{llll} \text{deg of freedom_01} = & 10 & \text{F_left} = & 0.069353216 \\ \text{deg of freedom_02} = & 3 & \text{F_right} = & 4.825621493 \\ & & & & & & & & & & \\ & & & & & & & $		alpha =	0.050			
deg of freedom_02 = $3 F_{right} = 4.825621493$ var01/var02 = 2.910034602		alpha/2 =	0.025			
var01/var02 = 2.910034602	· · · · · · · · · · · · · · · · · · ·		10			
	deg	of freedom_02 =		-		
$0.2 \le 2.910034602014.04273$			var0			
				0.2	<= 2.9100346020	14.04273