Nature of the population	Parameter	H_0	Ha	TS	Reject H ₀ if TS is
Normal Distribution with σ^2 known	μ	$\mu = \mu_0$	1. $\mu > \mu_0$ 2. $\mu < \mu_0$ 3. $\mu \neq \mu_0$	$\frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	1. greater than z_{α} 2. less than $-z_{\alpha}$ 3. less than $-z_{\alpha}$ or greater than z_{α}
Normal Distribution with σ^2 unknown and "small" sample size	μ	$\mu = \mu_0$	1. $\mu > \mu_0$ 2. $\mu < \mu_0$ 3. $\mu \neq \mu_0$	$\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	1. greater than $t_{n-1, \alpha}$ 2. less than $-t_{n-1, \alpha}$ 3. less than $-t_{n-1, \frac{\alpha}{2}}$ or greater than $t_{n-1, \frac{\alpha}{2}}$
σ^2 unknown and "large" sample size, not necessarily normal	μ	$\mu = \mu_0$	1. $\mu > \mu_0$ 2. $\mu < \mu_0$ 3. $\mu \neq \mu_0$	$\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	1. greater than z_{α} 2. less than $-z_{\alpha}$ 3. less than $-z_{\alpha}$ or greater than z_{α}
Population proportion	p	$\hat{p} = p$	1. $\hat{p} > p$ 2. $\hat{p} < p$ 3. $\hat{p} \neq p$	$\frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$	1. greater than z_{α} 2. less than $-z_{\alpha}$ 3. less than $-z_{\alpha}$ or greater than z_{α}
Normal distribution	σ	$\sigma = \sigma_0$	1. $\sigma > \sigma_0$ 2. $\sigma < \sigma_0$ 3. $\sigma \neq \sigma_0$	$\frac{(n-1)s^2}{\sigma_0^2}$	1. greater than $\chi^2_{n-1, \alpha}$ 2. less than $\chi^2_{n-1, 1-\alpha}$ 3. less than $\chi^2_{n-1, 1-\frac{\alpha}{2}}$ or greater than $\chi^2_{n-1, \frac{\alpha}{2}}$