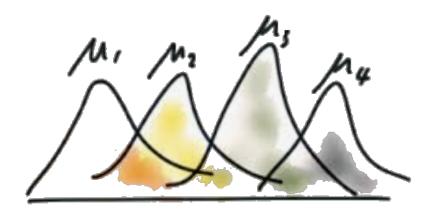
MTH 150

Elementary Statistics

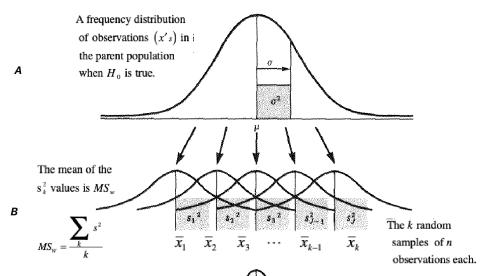
Analysis of Variance

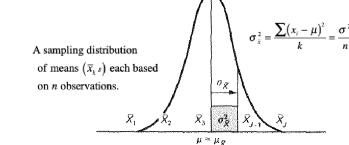


ANOVA $M_1 = M_2 = M_3 = M_4 ?$

С

Analysis of Variance





1. Since
$$s_{\bar{x}}^2 = \frac{s^2}{n}$$
, $ns_{\bar{x}}^2 = s^2$. Hence, $E(ns_{\bar{x}}^2) = \sigma^2$; $ns_{\bar{x}}^2$ is called the mean square between or MS_b

2.
$$\frac{\sum_{k=1}^{n} s_{k}^{2}}{n} = \frac{\left(s_{1}^{2} + s_{2}^{2} + \dots + s_{n}^{2}\right)}{n}, s_{w}^{2}; E\left(s_{w}^{2}\right) = \sigma^{2};$$

$$s_{w}^{2} \text{ is called the mean square within or } MS_{w}$$

3. Therefore
$$F = \frac{MS_b}{MS_w}$$
 should be "about" 1 when the null hypothesis is true.

Analysis of Variance

Penicillin is produced by the *Penicillium* fungus, which is grown in a broth whose sugar content must be carefully controlled. Several samples of broth were taken on three successive days, and the amount of dissolved sugars, in milligrams per milliliter, was measured on each sample. The results were as follows. Can we conclude that the mean sugar concentration differs among the three days?

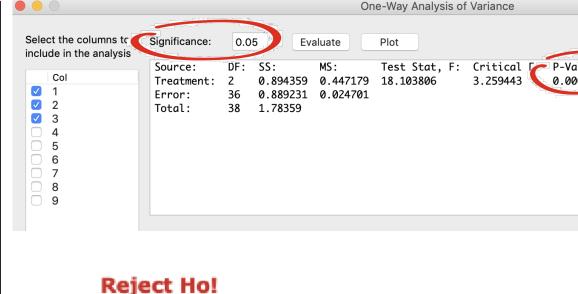
Day 1	Day 2	Day 3
4.8	5.4	5.5
5.1	5.0	5.1
5.1	5.0	5.3
4.8	5.1	5.5
5.2	5.2	5.3
4.9	5.1	5.5
5.3	5.3	5.1
4.9	5.2	5.6
5.0	5.2	5.3
4.8	5.1	5.2
4.8	5.4	5.5
5.1	5.2	5.3
5.0	5.4	5.4

- Normality that each sample is taken from a normally distributed population.
- Sample independence that each sample has been drawn independently of the other samples.
- Variance equality that the variance of data in the different groups should be the same.

Analysis of Variance

Penicillin is produced by the *Penicillium* fungus, which is grown in a broth whose sugar content must be carefully controlled. Several samples of broth were taken on three successive days, and the amount of dissolved sugars, in milligrams per milliliter, was measured on each sample. The results were as follows. Can we conclude that the mean sugar concentration differs among the three days?

Doy 1	Day 2	Doy 2
<u>Day 1</u>	<u>Day 2</u>	<u>Day 3</u>
4.8	5.4	5.4
5.1	5.2	5.2
5.1	4.8	4.8
4.8	5.1	5.1
5.2	5.2	5.2
4.9	5.1	5.1
5.3	5.3	5.3
4.9	5.2	5.2
5.0	4.9	4.9
4.8	5.1	5.1



MTH 150

Elementary Statistics

Analysis of Variance

where

then

where

Welch's ANOVA compares two means to see if they are equal. It is an alternative to the Classic ANOVA (Fisher) and can be used even if your data violates the assumption of homogeneity of variances.

You should run Welch's test in all cases where you have normally distributed data that violates the assumption of homogeneity of variance. ANOVA (and the non-parametric alternative Kruskal-Wallis) are very unstable for these situations, producing Type I error rates that are:

Conservative for large sample sizes and Inflated for small sample size.

Welch One Way ANOVA

$$F = \frac{\frac{1}{k-1} \sum_{j=1}^{k} w_j (\bar{x_j} - \bar{x'})^2}{1 + \frac{2(k-2)}{k^2 - 1} \sum_{j=1}^{k} \left(\frac{1}{n_j - 1}\right) \left(1 - \frac{w_j}{w}\right)^2}$$

$$w_j = \frac{n_j}{s_j^2} \qquad w = \sum_{j=1}^k w_j \qquad \tilde{x}' = \frac{\sum_{j=1}^k w_j \overline{x_j}}{w}$$

$$df = \frac{k^2 - 1}{3\sum_{j=1}^{k} \left(\frac{1}{n_j - 1}\right) \left(1 - \frac{w_j}{w}\right)^2}$$

 $F \sim F(k-1, df)$

Analysis of Variance

Welch One Way ANOVA

	Day 1	Day 2	Day 3	
	4.8	5.4	5.5	
	5.1	5.0	5.1	
	5.1	5.0	5.3	
	4.8	5.1	5.5	
	5.2	5.2	5.3	
	4.9	5.1	5.5	
	5.3	5.3	5.1	
	4.9	5.2	5.6	
	5.0	5.2	5.3	
	4.8	5.1	5.2	
	4.8	5.4	5.5	
	5.1	5.2	5.3	
	5.0	5.4	5.4	
α	0.05			
count	13	13	13	
mean	5.0	5.2	5.4	
variance	0.028	0.020	0.026	
w	463.014	650.000	499.507	1612.521
mean'	2307.945		2674.286	5.186
а	18.743	0.131	14.104	16.489
b	0.042	0.030	0.040	0.112
k	3.000			
F (TS)	16.041		CV:	3.422
df1	2.000			
df2	23.865		Reject Ho)!
p-value	0.000			

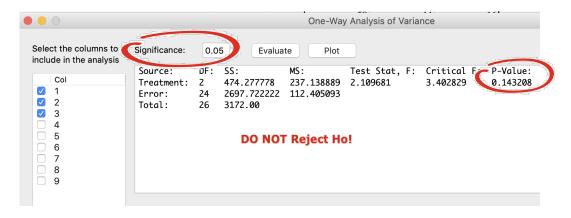
MTH 150

Elementary_Statistics

Analysis of Variance

Welch One Way ANOVA

1	2	3
50	44	16
39	31	60
42	50	24
45	22	19
38	30	31
44	27	37
40	32	44
49	25	55
42	40	
41		



	New	Old	Control	
	50	44	16	
	39	31	60	
	42			
	45			
	38			1
	44			
	40			
	49			1
	42	40		1
	41			1
α	0.05			
count	10	9	8	
mean	43.000	33.444	35.750	
variance	16.222	86.528	265.643	
w	0.616	0.104	0.030	0.75
mean'	26.507	3.479		41.38
a	1.608			
b	0.004	0.093	0.132	0.22
k	3.000			
F (TS)	4.315		CV:	3.98
df1	2.000			
df2	11.700		Reject Ho!	
p-value	0.041			

Two-way Analysis of Variance

TABLE: Crash Test Force on Femur with Two Factors: Femur Side and Vehicle Size Category				
	Small	Midsize	Large	SUV
Left Femur	1.6 1.4 0.5 0.2 0.4	0.4 0.7 1.1 0.7 0.5	0.6 1.8 0.3 1.3 1.1	0.4 0.4 0.6 0.2 0.2
Right Femur	2.8 1.0 0.3 0.3 0.2	0.6 0.8 1.3 0.5 1.1	1.5 1.7 0.2 0.6 0.9	0.7 0.7 3.0 0.2 0.2

Two-way analysis of variance involves *two* factors, such as vehicle size (small, midsize, large SUV) and femur side (left, right) as shown in the table. The two-way analysis of variance procedure requires that we test for (1) an interaction effect between the two factors; (2) an effect from the row factor; (3) an effect from the column factor.

- There does not appear to be an interaction effect.
- The car crash force measurements do not appear to be affected by whether the femur is in the left leg or right leg.
- The femur crash force measurements do not appear to be affected by the size of the vehicle.

