Infinitesimal Calculus

 $\Delta x \Delta y$ and $\frac{\Delta y}{\Delta x}$ "cannot stand"

• Derivative of the sum/difference of two functions

 $(x + \Delta x) \pm (y + \Delta y) = (x + y) + \Delta x + \Delta y$ \therefore we have a change of $\Delta x + \Delta y$.

• Derivative of the product of two functions

 $(x + \Delta x)(y + \Delta y) = xy + \Delta xy + x\Delta y + \Delta x\Delta y$ $\therefore \text{ we have a change of } \Delta xy + x\Delta y.$

• Derivative of the product of three functions

$$(x + \Delta x)(y + \Delta y)(z + \Delta z) = xyz + \Delta xyz + x\Delta yz + xy\Delta z + x\Delta y\Delta z + \Delta x\Delta y\Delta z + \Delta x\Delta y\Delta z + \Delta x\Delta y\Delta$$

$$\therefore \text{ we have a change of } \Delta xyz + x\Delta yz + xy\Delta z.$$

• Derivative of the quotient of two functions

Let
$$u = \frac{x}{y}$$
. Then by the product rule above, $yu = x$ yields
 $u\Delta y + y\Delta u = \Delta x$. Substituting for *u* its value, we have
 $\frac{x\Delta y}{y} + y\Delta u = \Delta x$. Finding the value of Δu , we have $\frac{\Delta xy - x\Delta y}{y^2}$

• Derivative of a power function (and the "chain rule")

Let $y = x^m$. $\therefore y = x \cdot x \cdot x \cdot \dots \cdot x$ (*m* times). By a generalization of the product rule, $\Delta y = (x^{m-1}\Delta x)(x^{m-1}\Delta x)(x^{m-1}\Delta x)\dots \cdot (x^{m-1}\Delta x)$ *m* times. \therefore we have $\Delta y = mx^{m-1}\Delta x$.

Derivative of the logarithmic function

Let $y = x^n$, *n* being constant. Then $\log y = n \log x$. Differentiating $y = x^n$, we have

dv

$$dy = nx^{n-1}dx$$
, or $n = \frac{dy}{x^{n-1}dx} = \frac{dy}{\frac{y}{x}dx} = \frac{\frac{dy}{y}}{\frac{dx}{x}}$, since $x^{n-1} = \frac{y}{x}$. Again, whatever

the differentials of $\log x$ and $\log y$ are, we have $d(\log y) = n \cdot d(\log x)$, or $d(\log y)$

$$n = \frac{d(\log y)}{d(\log x)}.$$
 Placing these values of *n* equal to each other, we obtain dy

$$\frac{d(\log y)}{d(\log x)} = \frac{\frac{1}{y}}{\frac{dx}{x}}.$$
 Now let *m* be the factor by which $\frac{dy}{y}$ must be multiplied

to make it equal to $d(\log y)$, then is $d(\log x) = \frac{mdx}{x}$.

We are now to show that m is a constant depending upon the base of the system.

To do this take
$$y = x^n$$
, from which we find as before $n' = \frac{d(\log y)}{d(\log x)} = \frac{\frac{dy}{y}}{\frac{dx}{x}}$.

But *m* is the ratio of $d(\log y)$ to $\frac{dy}{y}$; hence $d(\log z) = \frac{mdz}{z}$. Thus we see

that in any case the same ratio exists between the differential of the logarithm of a number divided by the number. Therefore m is a constant factor. To show that m depends upon the base of the system we have to recur to the definition of a logarithm to see that the only quantities involve are *the number*, its *logarithm*, and the *base* of the system. Of these the two former are variable, whence, as the base is the only constant in the scheme, m is a function of the base.

Finally, as m depends upon the base of the system, the base may be so taken that m = 1. The system of logarithms founded on this base is called the

Napierian system and denoted by $y = \ln x$, $\therefore (\ln x)' = \frac{dx}{x}$.

• Derivative of the exponential function

Let $y = a^x$. Taking the logarithms of both members $\log y = x \log a$. Differentiating $\frac{mdy}{y} \log a \, dx$, or $dy = \frac{a^x \log a \, dx}{m}$, remembering that $y = a^x$, and that $\log a$ is constant.

• Derivative of the sine function

Let x be any arc (or angle) and y be its sine, *i.e.* let $y = \sin x$. If x takes an infinitesimal increment (dx), let dy represent the contemporaneous infinitesimal increment of y. The the consecutive state of the function is

 $y + dy = \sin(x + dx) = \sin x \cos dx + \sin dx \cos x.$

Now $\cos dx = 1$, since as an angle grow less its cosin approaches the radius in value, and *at the limit*, is the radius. Moreover, as an angle grows less the sine and the corresponding arc approach equality, and *at the limit* we have $\sin dx = dx$. Thus the consecutive state may therefore be written $y + dy = \sin x + \cos x dx$.

From this subtract	$y = \sin x$
and we have	$dy = \cos x dx.$

• Derivative of the cosine function

Let x be any arc (or angle) and y be its cosine, *i.e.* let $y = \cos x$. Since $\cos x = \sin(90^\circ - x)$ we have $y = \sin(90^\circ - x)$. Differentiating this by the preceding proposition, we obtain $dy = \cos(90^\circ - x)(90^\circ - x)' = \cos(90^\circ - x)(-dx) = -\sin x dx$.

It was known that $\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$. Also known was $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6}$. Here we can see that the derivative of $\sin x$ is $\cos x$ and the derivative of $\cos x$ is the negative $\sin x$.